This article was downloaded by:

On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674
SYNTHESIS OF TETRAKIS(ALKYLISOCYANIDE)BIS(TRIARYLARSINE) COBALT(II) COMPLEXES. LIGAND SUBSTITUTION WITHOUT REDUCTION IN PENTAKIS(ALKYLISOCYANIDE)COBALT(II)
Clifford A. L. Becker ${ }^{\text {a }}$
${ }^{a}$ Department of Chemistry, University of Bahrain, Isa Town, Bahrain, Arabian Gulf

To cite this Article Becker, Clifford A. L.(1994) 'SYNTHESIS OF TETRAKIS(ALKYLISOCYANIDE)BIS(TRIARYLARSINE) COBALT(II) COMPLEXES. LIGAND SUBSTITUTION WITHOUT REDUCTION IN
PENTAKIS(ALKYLISOCYANIDE)COBALT(II)', Journal of Coordination Chemistry, 31: 4, 337 - 346
To link to this Article: DOI: 10.1080/00958979408024227
URL: http://dx.doi.org/10.1080/00958979408024227

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS OF TETRAKIS(ALKYLISOCYANIDE)BIS(TRIARYLARSINE) COBALT(II) COMPLEXES. LIGAND SUBSTITUTION WITHOUT REDUCTION IN PENTAKIS(ALKYLISOCYANIDE)COBALT(II)

CLIFFORD A.L. BECKER
Department of Chemistry, University of Bahrain, P.O. Box 32038, Isa Town, Bahrain, Arabian Gulf

(Received September 28, 1993)

Reactions of excess triarylarsine with pentakis(alkylisocyanide)cobalt(II) in EtOH or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ have produced complexes of the form $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}$, where $\mathrm{X}=\mathrm{ClO}_{4}, \mathrm{BF}_{4} ; \mathrm{AsR}_{3}=\mathrm{AsPh}_{3}$, $\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3} ; \mathrm{CNR}=\mathrm{CNC}_{6} \mathrm{H}_{11}, \mathrm{CNCHMe}_{2}, \mathrm{CNCH}_{2} \mathrm{Ph}, \mathrm{CNC}_{4} \mathrm{H}_{9}-n$. Magnetic susceptibilities ($\left.\mu_{\text {eff }}=1.8-2.3 \mathrm{BM}\right), v(-\mathrm{N} \equiv \mathrm{C}$), and diffuse reflectance electronic spectra suggest a tetragonal structure, trans- $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}\right.$, in the solid state. Electronic spectra, $v(-\mathrm{N}=\mathrm{C})$, and molar conductivity data are compatible with tetragonal structures in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$ solutions, but may suggest cis-isomerization in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ solution. Reactions with $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$ have produced $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right] \mathrm{X}_{2}, \mathrm{CNR}=\mathrm{CNCHMe}_{2}, \mathrm{CNC}_{6} \mathrm{H}_{11}, \mathrm{CNCH}_{2} \mathrm{Ph}$; which appear to be six-coordinate, in which $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$ is monodentate. [$\left.\mathrm{Co}(\mathrm{CNCHMe} 2)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ appears to be tetragonal in solid and solution states, but $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right] \mathrm{X}_{2}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{CH}_{2} \mathrm{Ph}\right.$; may be the cis-isomers. Solution decomposition leads to formation of the tetrahedral complexes, $\left[\mathrm{Co}\left(\mathrm{OAsR}_{3}\right)_{4}\right] \mathrm{X}_{2}, \mathrm{R}=\mathrm{Ph}$, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho ; \mathrm{X}=\mathrm{ClO}_{4}, \mathrm{BF}_{4}$.

KEYWORDS: Alkylisocyanide, triarylarsine, cobalt(II) complexes, substitution reactions

INTRODUCTION

Reaction of triphenylarsine with pentakis(arylisocyanide)cobalt(II) complexes has produced several different products. Reaction with $\left[\mathrm{Co}(\mathrm{CNPh})_{5}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ produced $\left[\mathrm{Co}(\mathrm{CNPh})_{3}\left(\mathrm{AsPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4},{ }^{1}$ in a reduction/ligand-substitution reaction analogous to that for $\mathrm{PPh}_{3} .{ }^{2}$ Reaction with $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)_{5}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ produced $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}\right]$, while reaction with $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-\right.\right.$ $\left.2,6)_{5}\right]\left(\mathrm{BF}_{4}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ afforded only $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)_{5}\right] \mathrm{BF}_{4} \cdot{ }^{3} \mathrm{AsPh}_{3}$ failed to react with $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{ClO}_{4}\right)_{2},{ }^{4}$ but $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{AsPh}_{3}\right] \mathrm{PF}_{6}$ has been prepared by ligand substitution into the $\mathrm{Co}(\mathrm{I})$ complex. ${ }^{5}$

In the work reported here, triarylarsines simply ligand-substitute one RNC and add a second AsR_{3}, thereby increasing the $\mathrm{Co}(\mathrm{II})$ coordination sphere to six. No evidence for reduction to $\mathrm{Co}(\mathrm{I})$ is observed, even in the presence of the liberated RNC, but rather some tendency for oxidation is observed.

EXPERIMENTAL

Reagents

Commercial alkylisocyanides $\mathrm{CNC}_{6} \mathrm{H}_{11}, \mathrm{CNCHMe}_{2}, \mathrm{CNCH}_{2} \mathrm{Ph}, \mathrm{CNC}_{4} \mathrm{H}_{9}-n$, and triarylarsines $\mathrm{AsPh}_{3}, \mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}, \mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$ (Strem Chemicals), were used without further purification. $\left[\mathrm{Co}_{2}\left(\mathrm{CNCHMe}_{2}\right)_{10}\right]\left(\mathrm{ClO}_{4}\right)_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Co}_{2}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{10}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ were prepared as previously reported. ${ }^{6.7}$ Anhydrous diethyl ether was filtered through an alumina column immediately before use.

Instrumentation

IR spectra were recorded on a Mattson Polaris FT-IR instrument. Solution electronic spectra were recorded on a Shimadzu UV-365 spectrophotometer; diffuse reflectance spectra were measured using an integrating sphere attachment to the Shimadzu UV-365. Magnetic susceptibilities were measured at room temperature using a Johnson Matthey magnetic susceptibility balance. Effective magnetic moments were calculated assuming Curie Law behaviour. Molar conductivities were measured on $\sim 0.001 \mathrm{M}$ solutions at $25^{\circ} \mathrm{C}$ using a Crison 525 conductimeter. C, H and N elemental analyses were performed using a Carlo Erba CHN-O/S elemental analyzer, model 1106.
$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$
A solution of $670 \mathrm{mg} \mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ dissolved in $3.0 \mathrm{~cm}^{3}$ of EtOH and filtered through cotton was chilled in ice. Then $1.000 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NC}$ (neat; 5:1 RNC:Co mole ratio) was added dropwise while the $\mathrm{Co}(\mathrm{II})$ solution was stirred. The solution turned from pink to dark blue in colour, but no solid precipitated. Next, $2.80 \mathrm{~g} \mathrm{AsPh}_{3}(5: 1$ As: Co mole ratio), dissolved in $1.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through cotton, was added dropwise while the reaction mixture was stirred. The colour of the solution changed to yellow-brown while arsine was being added, and a green solid precipitated. Dark green crystals were filtered from the brown solution and washed three times with $2.0 \mathrm{~cm}^{3}$ portions of ether, which were added to the filtrate. Overnight refrigeration of the filtrate afforded a second crop of grass-green microcrystals. The crude product ($2.22 \mathrm{~g} ; 93 \%$ yield) was dissolved in $10.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through cotton with a $1.0 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ rinse, and precipitated by dropwise addition of $15.0 \mathrm{~cm}^{3}$ of ether. Yield: 2.01 g (91% recovery; 84% overall yield).
$\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$
A 500 mg sample of $\left[\mathrm{Co}_{2}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{10}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ was dissolved in $3.5 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through cotton, and chilled in ice. Then 925 mg AsPh 3 ($5: 1 \mathrm{As:Co}$ mole ratio) dissolved in $1.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise while the reaction mixture was stirred. The dark yellow-brown solution became dark red-brown in colour while AsPh_{3} was being added, but no precipitate formed. When ligand addition was complete, the reaction mixture was warmed to room temperature and ether was carefully added dropwise. Initial precipitation was observed after $3.0 \mathrm{~cm}^{3}$ of ether had been added. A total volume of $5.0 \mathrm{~cm}^{3}$ of ether was added, and the
dark green microcrystalline product was filtered at room temperature and washed with $2.0 \mathrm{~cm}^{3}$ of ether (345 mg). Addition of $1.0 \mathrm{~cm}^{3}$ of ether to the filtrate and chilling in ice afforded a second crop of dark green microcrystals. The crude product ($450 \mathrm{mg} ; 57 \%$ yield) was dissolved in $2.0 \mathrm{~cm}^{3}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through cotton, and precipitated by dropwise addition of $4.0 \mathrm{~cm}^{3}$ of ether. The dark green microcrystals were filtered without prior chilling in ice and washed twice with 2.0 cm^{3} portions of ether. Yield: 410 mg (91% recovery; 52% overall yield).

RESULTS AND DISCUSSION

Physical properties of the new $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes in the solid state are summarized in Table 1; some physical properties in solution are listed in Table 2. Representative $v(-N \equiv C)$ IR patterns are illustrated in Figure 1.

Synthesis of the Complexes

Complexes involving the CNCHMe_{2} and $\mathrm{CNCH}_{2} \mathrm{Ph}$ ligands were synthesized starting from the previously-isolated $\mathrm{Co}(\mathrm{II})$-alkylisocyanide complexes, $\left[\mathrm{Co}_{2}(\mathrm{CNCHMe})_{10}\right]\left(\mathrm{ClO}_{4}\right)_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Co}_{2}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{10}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, reacted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, as in the synthesis of $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$. $\left[\mathrm{Co}_{2}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{10}\right]\left(\mathrm{ClO}_{4}\right)_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ has never been successfully isolated, and handling $\left[\mathrm{Co}_{2}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{10}\right]\left(\mathrm{ClO}_{4}\right)_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ is very undesirable, ${ }^{6}$ so triarylarsinecomplexes involving $\mathrm{CNC}_{6} \mathrm{H}_{11}$ and $\mathrm{CNC}_{4} \mathrm{H}_{9}-n$ are best prepared by reaction of $\left[\mathrm{Co}(\mathrm{CNR})_{5}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ in situ in EtOH , as in the synthesis of [$\left.\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$. Either reaction would presumably yield the same product, i.e., $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}$; these reactions are not solvent-controlled. Crude products isolated from EtOH, however, tend to be more pure, possibly due to rapid precipitation with less time for solution decomposition. Recrystallizations are necessarily from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether.

Reactions with $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$ are surprisingly similar to reactions with the simple triarylarsines, leading to complexes of the form $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right] \mathrm{X}_{2}, \mathrm{X}=\mathrm{ClO}_{4}, \mathrm{BF}_{4}$. A mole ratio of 5:1 As:Co was maintained by using only 2.5 moles of $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$ in these reactions, but two $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$ ligands nevertheless substituted in all instances. Crude products required substantially larger volumes of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, however, for recrystallization. As will be discussed later, data support monodentate coordination of $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$ in these complexes.

Several anticipated products are conspicuously absent from the list of new complexes in Tables 1 and 2. A green product from the reaction of $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$ with $\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{5}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ decomposed upon attempted filtration and washing with ether. A blue-green product from the reaction of $\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}$ with $\left.\left[\mathrm{Co}(\mathrm{CNCHMe})_{5}\right)_{\mathrm{ClO}}^{4}\right)_{2}$ appeared to be a mixture of $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Co}\left(\mathrm{OAsR}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, already initially prepared, so attempted characterization would have been meaningless. Complete conversion to the intense azure-coloured compound $\left[\mathrm{Co}\left(\mathrm{OAsR}_{3}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ eventually took place in the solid state. $\left[\mathrm{Co}(\mathrm{CNCHMe})_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, which could be characterized except for magnetic susceptibility (the material would not pack in a Gouy tube), slowly converted to $\left[\mathrm{Co}\left(\mathrm{OAsPh}_{3}\right)_{4}\right]\left(\mathrm{C1O}_{4}\right)_{2}$ in the solid state over weeks to
Table 1 Solid state properties of tetrakis(alkylisocyanide)bis(triarylarsine)cobalt(II) complexes

Complex/Colour/M.pt.	$v(-\mathrm{N} \equiv \mathrm{C})$	Electronic spectra	$\chi_{g} \times 10^{9} / \mu_{\text {eff }}$	Elemental analysis, found/calc.		
				C	H	N
$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO} \mathrm{O}_{4}\right)_{2}$	2211 vs	$\approx 720 \mathrm{sh}(0.75)$	1090 ± 20	58.75	5.69	4.16
Dark green	-2178 w(sh)	~ 630 (0.88)	$2.25 \pm 0.01 \mathrm{BM}$	58.81	5.71	4.29
$160-169^{\circ} \mathrm{C}$ (dec)		~ 570 sh (0.80) 410br (0.99) $\sim 270 \mathrm{br}$ (1.04)				
$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$	2213 vs	$\approx 720 \mathrm{sh}(0.67)$	828 ± 5	60.12	6.28	3.96
Dark green	$\sim 2181 \mathrm{w}(\mathrm{sh})$	~ 630 (0.85)	$2.06 \pm 0.01 \mathrm{BM}$	59.98	5.82	4.37
$140.155^{\circ} \mathrm{C}$ (dec)		$\begin{aligned} & \sim 570 \text { sh }(0.76) \\ & \sim 400(1.01) \\ & \sim 320 \mathrm{br}(1.03) \\ & \sim 270(1.02) \end{aligned}$				
$\left.\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left\{\mathrm{Ass}^{\left(\mathrm{C}_{6}\right.} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}\right\}_{2}\right]\left[\mathrm{ClO}_{4}\right)_{2}$	2210 vs	$\sim 620 \mathrm{br}$ (0.86)	567 ± 8	59.80	5.90	4.23
Dark green	$\sim 2182 \mathrm{vw}$ (sh)	400br (0.99)	$1.92 \pm 0.01 \mathrm{BM}$	60.44	6.23	4.03
$165-183^{\circ} \mathrm{C}$ (dec)		$\begin{aligned} & \sim 320 \mathrm{br}(1.00) \\ & \sim 270(0.97) \end{aligned}$				
$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2220 m	$\sim 625 \mathrm{br}$ (0.38)	710 ± 30	56.62	5.47	3.04
Pale green	2205 vs	385sh (0.91)	$2.17 \pm 0.03 \mathrm{BM}$	56.56	5.48	3.28
173-180 ${ }^{\circ} \mathrm{C}$ (dec)		$\begin{aligned} & 335(1.01) \\ & -250(0.97) \end{aligned}$				
$\left[\mathrm{Co}(\mathrm{CNCHMe})_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	2215 vs	$\sim 650 \mathrm{br}$ (0.94)	*	53.70	5.10	4.89
Dark green	$\sim 2180 \mathrm{w}$ (sh)	$\sim 410 \mathrm{br}$ (1.02)		54.46	5.10	4.89
$135-150^{\circ} \mathrm{C}$ (dec)		$\sim 310 \mathrm{br}$ (1.02)				
$\left[\mathrm{Co}\left(\mathrm{CNCHMe}_{2}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	2215 vs	-630br (0.77)	870 ± 40	53.86	5.05	3.59
Medium green	$\sim 2182 \mathrm{w}(\mathrm{sh})$	$\sim 370 \mathrm{br}$ (1.07)	$2.19 \pm 0.03 \mathrm{BM}$	54.20	5.08	3.72
$161-166^{\circ} \mathrm{C}$ (dec)		$\begin{aligned} & -330 \mathrm{br}(1.08) \\ & \sim 280 \mathrm{br}(1.07) \end{aligned}$				
$\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-\eta\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	2226 vs	$\sim 620 \mathrm{br}(0.87$)	635 ± 5	55.83	5.52	
Dark green	$\sim 2193 \mathrm{vw}(\mathrm{sh})$	$\sim 400 \mathrm{br}$ (1.00)	$1.83 \pm 0.01 \mathrm{BM}$	55.92	5.53	4.66
$143-155^{\circ} \mathrm{C}$ (dec)		-310br (1.02)				
	2225 vs	$\sim 630 \mathrm{br}(0.60$)	*	56.43	6.07	4.03
Dark green	-2191 w(sh)	-400 sh (1.01)		56.47	6.00	4.21
$156-165^{\circ} \mathrm{C}$ (dec)		340 br (1.08)				
$\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$	2229 vs	$\sim 630 \mathrm{br}$ (0.88)	1160 ± 23	61.76	4.39	3.98
Dark green	$\sim 2195 \mathrm{w}$ (sh)	~ 390 br (1.01)	$2.31 \pm 0.02 \mathrm{BM}$	62.18	4.45	4.27
147-150 ${ }^{\circ} \mathrm{C}$ (dec)		$\begin{aligned} & \sim 330(1.03) \\ & \sim 290 \mathrm{br}(1.01) \end{aligned}$				
$\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}_{4}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2234 s	$\approx 680 \mathrm{br}, \mathrm{sh}(0.59)$	650 ± 20	58.93	4.44	3.07
Medium green	~ 2215 vs	$\sim 600 \mathrm{br}$ (0.64)	$2.13 \pm 0.02 \mathrm{BM}$	59.13	4.52	3.26
119-129 ${ }^{\circ} \mathrm{C}$ (dec)		$\begin{aligned} & \sim 400 \mathrm{sh}(1.04) \\ & -330 \mathrm{br}(1.06) \end{aligned}$				

[^0]Table 2 Solution properties of tetrakis(alkylisocyanide)bis(triarylarsine)cobalt(II) complexes.

Complex	$\mathrm{v}(-\mathrm{N}=\mathrm{C})$ infrared ${ }^{\text {a }}$		Electronic spectra ${ }^{6}$		${ }^{\Lambda_{M}{ }^{\text {c }} \text {, }}$
	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	
$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	2228 vs	2213 s(sh)	760 br (125)	720br (92)	305
	$\sim 2202 \mathrm{w}(\mathrm{sh})$	2207 s (sh)	~ 675 sh (105)	~ 315 sh (640)	195
		2188 m	-372 sh (510)	$246(11,000)$	185
			319 (1100)	223 (11,000)	23
			~ 250 (12,000)		
$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$	2228 vs	2215 s	-805br (190)	720br (81)	320
	$\sim 2200 \mathrm{w}(\mathrm{sh})$	$\sim 2208 \mathrm{w}$ (sh)	~ 675 sh (100)	$\approx 315 \mathrm{sh}(700)$	220
		2189 m	$305 s h$ (810)	246 (12,000)	185
			~ 250 (12,000)	219 (12.000)	31
$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left\{\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	2222 vs	2232 w	790 br (150)	726 br (90)	300
		2206 s	420sh (1300)	~ 315 sh (1100)	200
		2189 w	$-320 \operatorname{sh}$ (1800)	248 (29.000)	185
			$\sim 245(16,000)$		34
$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$\begin{aligned} & 2228 \text { vs } \\ & 2124 \mathrm{w} \end{aligned}$		$762 \mathrm{br}(155)$	$728 \mathrm{br}(105)$	315 205
	$2124 \mathrm{w}$	$\begin{aligned} & 2177 \mathrm{w} \\ & 2166 \mathrm{w} \end{aligned}$	$\begin{aligned} & \sim 385 \operatorname{sh}(500) \\ & \sim 320 \operatorname{sh}(1300) \end{aligned}$	$\begin{aligned} & \approx 315(1100) \\ & 245 \operatorname{sh}(40,000) \end{aligned}$	205 175
			- 245 (16,000)		28
$\left[\mathrm{Co}\left(\mathrm{CNCHMe}_{2}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	2227 vs	2220 s	$\sim 760 \mathrm{br}$ (100)	740 br (68)	320
		2164 m	657 sh (93)	$\approx 315 \mathrm{sh}(700)$	210
			$-310 \operatorname{sh}(1300)$	$247(21,500)$	185
			250 (9000)		20
$\left[\mathrm{Co}\left(\mathrm{CNCHMe}_{2}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	2226 vs	2213 s	768 br (140)	746br (87)	320
		2185 w	405 (1200)	$\approx 315 s \mathrm{sh}(1100)$	215
			~ 315 sh (1400)	246 (14,000)	185
			245 (14,000)	-2.22 (14,000)	25
$\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-\eta\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	2239 vs	$\sim 2230 \mathrm{w}$ (sh)	765 br (160)	728 br (86)	305
		2221 s	≈ 410 sh (220)	-310sh (570)	185
		$\sim 2205 \mathrm{w}(\mathrm{sh})$	~ 315 sh (930)	246 (10,000)	175
			$250(12,000)$	224 (10,000)	
			790 br (145)	716 br (120)	
	$\approx 2220 \mathrm{vw}(\mathrm{sh})$	$-2232 \mathrm{w}(\mathrm{sh})$	~ 670 sh (115)	-310sh (700)	180
	$\sim 2170 \mathrm{vw}(\mathrm{sh})$	2220 s	432 (1500)	$247(29,000)$	175
	2133 w	2202 m	-320 sh (1500)		20
			249 (16,000)		
$\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$	2241 vs	2224 vs	820 br (195)	$702 \mathrm{br}(56)$	315
	$\approx 2230 \mathrm{w}(\mathrm{sh})$	$\sim 2220 \mathrm{w}$ (sh)	413 (635)	≈ 390 sh (580)	210
	$\sim 2170 \mathrm{w}(\mathrm{sh})$	2200 w	-290 sh (6000)	246 (14,000)	180
	2134 m		248 (12,000)		19
$\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$	2250 s	2224 s	-825br (85)	-700 br (50)	315
	$\sim 2230 \mathrm{~m}$ (sh)	2195 w (sh)	412 (4500)	$\approx 400 \mathrm{sh}(350)$	235
	2170 m (sh)	2160 w	-290sh (5600)	-290 sh (6000)	170
	2135 vs		-240 sh $(44,000)$	239sh (39,000)	25

Figure 1 Representative $v(-N \equiv \mathrm{C})$ IR patterns for $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes; top to bottom: $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Nujol), $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left\{\mathrm{Ass}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Nujol), [Co $\left.\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{Nujol})$, $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
months. $\left[\mathrm{Co}\left(\mathrm{CNCHMe}_{2}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ is stable in the solid state. $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ also becomes a mixture of blue [$\left.\mathrm{Co}\left(\mathrm{OAsPh}_{3}\right)_{4}\right]\left(\mathrm{BF}_{4}\right)_{2}$ and green $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ over a long period (ca one year). [$\left.\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}, \quad\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left\{\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.\right.\right.$ $\left.\left.\rho)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ are stable in the solid state. Multiple recrystallization of the $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}-$ $\left[\mathrm{Co}\left(\mathrm{OAsR}_{3}\right)_{4}\right] \mathrm{X}_{2}$ mixtures from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether leads to isolation of the pure tetrahedral complexes, $\left[\mathrm{Co}\left(\mathrm{OAsR}_{3}\right)_{4}\right] \mathrm{X}_{2}, \mathrm{R}=\mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho ; \mathrm{X}=\mathrm{ClO}_{4}, \mathrm{BF}_{4}$, to be discussed more thoroughly in a subsequent paper.

Reaction of $\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}$ with $\left[\mathrm{Co}_{2}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{10}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) produced the cobalt(III) complex, $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left\{\mathrm{OAs}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}\right\}_{2}\right]\left(\mathrm{BF}_{4}\right)_{3}$, as previously reported. ${ }^{7}$ This reaction may be solvent-dependent; faster recovery from EtOH may have allowed isolation of a $\mathrm{Co}(\mathrm{II})$ complex. $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ and $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]$ $\left(\mathrm{BF}_{4}\right)_{2}$ appear to be stable in the solid state. In a second crop from the reaction of $\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}$ with $\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{5}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (in EtOH), however, dark yellow crystals were recovered with the microcrystalline dark green $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$. From the $v(-\mathrm{N} \equiv \mathrm{C})$ IR pattern and frequency $(2249 \mathrm{~s}$ cm^{-1} (Nujol)), this new compound could be $\left[\mathrm{Co}\left(\mathrm{CNC}_{4} \mathrm{H}_{9}-n\right)_{4}\left\{\mathrm{OAs}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.\right.\right.$ $\left.\rho)_{3} \gamma_{2}\right]\left(\mathrm{ClO}_{4}\right)_{3}$. Further investigation is required.

Whereas triarylphosphines promote immediate reduction/ligand substitution upon reaction with pentakis(alkylisocyanide)cobalt(II), ${ }^{4.8}$ triarylarsines initially substitute in the $\mathrm{Co}(\mathrm{II})$ complexes. These $\mathrm{Co}(\mathrm{II})$ complexes, $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}$, are at least somewhat metastable with respect to oxidation, however, as is clearly evidenced by the relative ease of formation of $\left[\mathrm{Co}\left(\mathrm{OAsR}_{3}\right)_{4}\right] \mathrm{X}_{2}$ and $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{OAsR}_{3}\right)_{2}\right] \mathrm{X}_{3}$ in both solution and solid state. Ability to promote oxidation in their complexes appears to be in the order $\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}>\mathrm{AsPh}_{3}>$ $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$. This reaction pattern is quite remarkable. In so many ligand substitution reactions AsPh_{3} behaves analogously to PPh_{3}, albeit often somewhat less reactive. For triarylphosphines to rapidly reduce pentakis(alkylisocyanide)cobalt(II) complexes while triarylarsines substitute in pentakis(alkylisocyanide)cobalt(II) with some tendency to spontaneously oxidize to the triarylarsine oxide and even promote $\mathrm{Co}(\mathrm{II})$ oxidation to $\mathrm{Co}($ III $)$, is a drastic change from the usual pattern of parallel behaviour for $\mathrm{PR}_{3}, \mathrm{AsR}_{3}$ and SbR_{3}. Preliminary results ${ }^{9}$ indicate that reactions with SbPh_{3} are even more prone to oxidation of $\mathrm{Co}(\mathrm{II})$ in the formation of $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{OSbPh}_{3}\right)_{2}\right] \mathrm{X}_{3}$ complexes.

Characterization in the Solid State

Effective magnetic moments for the $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes were calculated from room-temperature magnetic susceptibility measurements (Table 1) assuming Curie Law behaviour and using diamagnetic corrections for the ions taken from the literature ${ }^{10}$ and directly measured for the ligands (Table 3). Magnetic moments ($1.8-2.3 \mathrm{BM}$) are within the range observed for low-spin $\mathrm{Co}(\mathrm{II})$ complexes in general, $1.8-2.7 \mathrm{BM}^{10.11}$ and within the range previously reported for tetragonally-substituted six-coordinated $\mathrm{Co}(\mathrm{II})$ with four alkylisocyanide ligands, $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{~L}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{xH}_{2} \mathrm{O}, \mathrm{L}=$ aromatic and cyclic aliphatic amines (1.8-2.5 BM). ${ }^{12}$ These $\mu_{\text {eff }}$ values are distributed between the ranges appropriate for low-spin square planar $\mathrm{Co}(\mathrm{II})$ complexes, 2.1-2.9 BM , and spin-paired octahedral

Table 3 Measured diamagnetic susceptibilities.

Formula	$\chi_{\mathrm{g}} \times 10^{9}$	$\chi_{\mathrm{M}} \times 10^{6}$
$\mathrm{CNC}_{6} \mathrm{H}_{11}$	-637 ± 8	-69.5 ± 0.9
CNCHMe_{2}	-664 ± 9	-45.9 ± 0.6
$\mathrm{CNC}_{4} \mathrm{H}_{9}-\eta$	-618 ± 4	-51.4 ± 0.3
$\mathrm{CNCH}_{2} \mathrm{Ph}$	-579 ± 4	-67.8 ± 0.4
$\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	-572 ± 14	-175 ± 4
$\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}^{2}\right)_{3}$	-562 ± 24	-196 ± 8
$\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$	-482 ± 25	-234 ± 12

$\mathrm{Co}(\mathrm{II})$ complexes, 1.7-2.0 BM, however, according to values suggested by Figgis and Nyholm ${ }^{13}$. Tetragonal structures for trans- $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ would clearly be compatible with this magnetic data.

The $v(-N \equiv C)$ IR pattern of one strong band $\left(2210-2230 \mathrm{~cm}^{-1}\right.$, dependent on the particular RNC) with an unresolved lower-energy shoulder (see Figure 1), seen for all of the $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}, \mathrm{AsR}_{3}=\mathrm{AsPh}_{3}, \mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}$, complexes in the solid state, is analogous to known or presumed tetragonal complexes, e.g., $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{ClO}_{4}\right)_{2}\right], \quad \mathrm{R}=2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3},{ }^{3} \quad 2,6-\mathrm{Et}_{2} \mathrm{C}_{6} \mathrm{H}_{3},{ }^{14}$ $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{~L}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} .{ }^{12}$ This pattern has been previously interpreted as indicating a slightly distorted square planar arrangement of four organoisocyanide ligands, as confirmed in X-ray structures. ${ }^{14.15}$ The $v(-N \equiv C)$ IR pattern therefore also supports a tetragonal structure for the $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ complexes in the solid state. The diffuse reflectance electronic spectra for the $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}, \mathrm{AsR}_{3}=\mathrm{AsPh}_{3}, \mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}$, complexes (see Table 1) are approximately the same, and similar to most of the spectra for the $\left[\mathrm{Co}\left(\mathrm{CNCMe}_{3}\right)_{4} \mathrm{~L}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ complexes. ${ }^{12}$ This further supports a tetragonal structure for the $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes.

Structures of the $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right] \mathrm{X}_{2}$ complexes in the solid state are unclear. While eight coordination is known for $\mathrm{Co}(\mathrm{II})$, as in the dodecahedral species $\left(\mathrm{Ph}_{4} \mathrm{As}\right)_{2}\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{4}\right],{ }^{16}$ it would be unexpected with ligands as bulky as $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$. Characterization data appear to be most consistent with six-coordinate Co (II), in which case $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$ must be acting as a monodentate ligand. Having normally-chelating bidentate ligands coordinated through only one site is not unknown in cobalt-organoisocyanide chemistry, as in the recently-reported series of $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{3} \mathrm{Et}_{2}-2,6\right)_{4} \mathrm{~L}-\mathrm{L}\right] \mathrm{BF}_{4}$ complexes with bidentate tertiary phosphine ligands. ${ }^{17}$ Interestingly, the structure of $\left[\mathrm{Co}(\mathrm{CNCHMe})_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ appears to be different from that of $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\right.$ $\left.\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2} .\left[\mathrm{Co}(\mathrm{CNCHMe})_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ has the same $v(-N \equiv C)$ IR pattern, $\mu_{\text {ett }}$ value, and diffuse reflectance spectrum characteristic of the $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes with monodentate triarylarsines, and has probably the same tetragonal structure.

The $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right] \mathrm{X}_{2}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{CH}_{2} \mathrm{Ph}$, complexes, however, have different diffuse reflectance spectra in which the first broad band(s) is(are) noticeably weaker, and drastically different $v(-N \equiv C)$ IR patterns (see Figure 1). Crude $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ showed the typical $v(-N \equiv C)$ IR pattern ($2220 \mathrm{vs}, \sim 2190 \mathrm{w}(\mathrm{sh}) \mathrm{cm}^{-1}$), but reverted to the reported spectrum upon routine recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether, while
$\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ exhibited the reported spectrum upon initial precipitation. The higher energy band in each spectrum, 2234 and 2220 cm^{-1}, respectively, is slightly higher than the dominant band of the "trans-" pattern for these particular RNC ligands ($5-10 \mathrm{~cm}^{-1}$), but is still substantially lower than the $\mathrm{v}(-\mathrm{N} \equiv \mathrm{C})$ value observed in a $\mathrm{Co}(\mathrm{III})$ complex, e.g., $2258 \mathrm{~cm}^{-1}$ for $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left\{\mathrm{OAs}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}\right\}_{2}\right]\left(\mathrm{BF}_{4}\right)_{3} .{ }^{7}$ Thus partial oxidation to Co (III) should be excluded as a possibility. What could be occurring here is cisisomerization of the normally trans-configuration of the two $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$ ligands. Further investigation would be necessary to elucidate these structures.

Characterization in Solution

Molar conductivity values $\left(\Lambda_{M}\right)$ for the $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}$. complexes (see Table 2) in $\mathrm{CH}_{3} \mathrm{CN}\left(305-320 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right.$), acetone ($180-220$), and $\mathrm{CH}_{3} \mathrm{NO}_{2}$ (175185) are slightly high, but still reasonably close to the expected ranges for $2: 1$ electrolytes. ${ }^{18} \Lambda_{\mathrm{M}}$ values in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(17-34 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)$ show considerable ion-pairing; this is customary behaviour for $\mathrm{Co}(\mathrm{II})$-organoisocyanide complexes. ${ }^{6,7}$ Λ_{M} values for the $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right] \mathrm{X}_{2}$ complexes are comparable to values found for complexes with monodentate triarylarsine ligands. Thus all of the complexes reported here can be considered to be $2: 1$ electrolytes in solution.

The $v(-N \equiv C)$ IR patterns for all of the $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{AsR}_{3}\right)_{2}\right] \mathrm{X}_{2}$ complexes with the triarylarsine ligands and for $\left[\mathrm{Co}(\mathrm{CNCHMe})_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, are basically the same as seen in the solid state (see Figure 1). This suggests that the trans-tetragonal geometry is maintained in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. [$\mathrm{Co}\left(\mathrm{CNC}_{4}\right.$ $\left.\left.\mathrm{H}_{9}-n\right)_{4}\left\{\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho\right)_{3}\right\}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$, however, also show weak bands at $2133,2170 \mathrm{~cm}^{-1}$, suggesting a $\mathrm{Co}(\mathrm{I})$ species, that may be formed in solution (Co(I) $v(-N \equiv C)$ IR bands are extremely intense, ${ }^{6}$ so only small concentrations are present in these spectra). $\left[\mathrm{Co}\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, shows a $v(-\mathrm{N} \equiv \mathrm{C})$ IR pattern analogous to the triarylarsine complexes, but with a weak band, possibly due to $\mathrm{Co}(\mathrm{I})$, at $\sim 2144 \mathrm{~cm}^{-1}$. $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}\right.$ has a weaker Co (II) pattern, $2250,2230 \mathrm{~cm}^{-1}$, with a stronger $\mathrm{Co}(\mathrm{I})$ pattern, 2135,2170 cm^{-1}; it is otherwise also analogous to the complexes with the triarylarsines. Thus, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, all of the $\mathrm{Co}(\mathrm{II})$ complexes appear to have the same trans-tetragonal structure.

In $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ solution, the $\mathrm{v}(-\mathrm{N} \equiv \mathrm{C})$ IR patterns are more difficult to interpret. Almost all of the complexes show two closely-spaced bands, often unresolved, with a less intense band at lower energy, all within the range appropriate for $\mathrm{Co}(\mathrm{II})$ complexes. A cis-substituted octahedral geometry ($C_{2 v}$) should theoretically show four symmetry-allowed $v(-\mathrm{N} \equiv \mathrm{C})$, i.e., $2 A_{1}+B_{1}+B_{2}$, but these bands could be only partially resolved. This $v(-\mathrm{N} \equiv \mathrm{C}) \mathrm{IR}$ pattern is certainly more complex than that observed for the presumably trans-tetragonal structure, and could be indicative of a cis- geometry. This pattern, however, does not closely resemble the $v(-\mathrm{N} \equiv \mathrm{C})$ IR pattern observed for $\left[\mathrm{Co}(\mathrm{CNR})_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right] \mathrm{X}_{2}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{CH}_{2} \mathrm{Ph}$, in the solid state.

Solution electronic spectra for almost all of the new complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$ (see Table 2) show basically the same pattern of a broad crystal field band ($\sim 700-800 \mathrm{~nm}, \varepsilon \simeq 50-200$), with higher energy shoulders, culminating in one or more intense charge transfer bands (starting at $245-250 \mathrm{~nm}, \varepsilon \simeq 10,000-40,000$).

Several spectra in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ only, especially $\left[\mathrm{Co}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)_{4}\left(\mathrm{Ph}_{2} \mathrm{AsCH}_{2}\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{AsPh}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, also exhibit a well-resolved band $\sim 405-430 \mathrm{~nm}$. In general, spectra for the complexes with $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{\checkmark} \mathrm{AsPh}_{2}$ appear very similar to spectra for complexes of the AsR_{3} ligands with the same RNC, suggesting analogous solution structures. Both $\lambda_{\max }$ and ε of the crystal field band are higher in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ than in $\mathrm{CH}_{3} \mathrm{CN}$.

All complexes decompose in solution, but decomposition rates and patterns vary depending on the particular RNC, arsine, and solvent. Complexes with $\mathrm{Ph}_{2} \mathrm{AsCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2}$ ligands decompose into unidentified product(s), but complexes with $\mathrm{AsR}_{3}=\mathrm{AsPh}_{3}, \mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}\right)_{3}$; systematically convert over a period of days into intense blue, tetrahedral $\left[\mathrm{Co}(\mathrm{OAsR})_{3}\right] \mathrm{X}_{2}$ complexes, easily identified by their typical electronic spectra. ${ }^{19,20}$ This solution-phase oxidation/decomposition will be further investigated in a subsequent paper, but preliminary observations indicate that the reaction rates are clearly related to both the $\mathrm{AsR}_{3}, \mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ $\mathrm{Me}-\rho)_{3}>\mathrm{AsPh}_{3}$, and the RNC, $\mathrm{CNCHMe} 2_{2}>\mathrm{CNC}_{4} \mathrm{H}_{9}-n \mathrm{CNCH}_{2} \mathrm{Ph}>\mathrm{CNC}_{6} \mathrm{H}_{11}$.

Acknowledgements

This work was supported by a grant from the University of Bahrain. The undergraduate students Hekayat Abdulla A. Latif and Amani Hassan Abudris are acknowledged for having performed some of the characterization of these complexes.

References

1. C.A.L. Becker, Inorg. Chim. Acta, 36, L441 (1979).
2. C.A.L. Becker, Synth. React. Inorg. Met. -Org. Chem., 9, 445 (1979).
3. C.A.L. Becker and J.C. Cooper, Inorg. Chim. Acta, 158, 141 (1989).
4. C.A.L. Becker, A. Anisi, G. Myer and J. D. Wright, Inorg. Chim. Acta, 111, 11 (1986).
5. R.B. King and M.S. Saran, Inorg. Chem., 11, 2112 (1972).
6. C.A.L. Becker, J. Coord. Chem., 28, 147 (1993).
7. C.A.L. Becker, Inorg. Chim. Acta, 203, 175 (1993).
8. C.A.L. Becker, S.A. Al-Qallaf and J. C. Cooper, Inorg. Chim. Acta, 188, 99 (1991).
9. C.A.L. Becker, 204th National Meet. American Chemical Society, Washington, DC, Aug. 1992, Abstr. no. 381 (Inorg. Div.)
10. B.N. Figgis and J. Lewis, in J. Lewis and R.G. Wilkins (Eds.) "Modern Coordination Chemistry" (Interscience, New York, 1960), Ch. 6.
11. "JM Magnetic Susceptibility Balance Instruction Manual" (Johnson Matthey Chemicals, York Way, Royston Hertfordshire SG8 5HJ, U.K.).
12. C.A.L. Becker, J. Coord. Chem. 26, 231 (1992).
13. B. N. Figgis and R.S. Nyholm, J. Chem. Soc., 12 (1954).
14. C.A.L. Becker and J.C. Cooper, Inorg. Chim. Acta, 182, 25 (1991).
15. C.J. Gilmore, S.F. Watkins and P. Woodward, J. Chem. Soc. A. 2833 (1969).
16. F.A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry" (Interscience, New York, 5th edn., 1988).
17. C.A.L. Becker, J. Coord. Chem., 29, 73 (1993).
18. R. J. Angelici, "Synthesis and Technique in Inorganic Chemistry" 2nd edn, (Saunders, Philadelphia, 1960), App. 1.
19. A.B.P. Lever, "Inorganic Electronic Spectroscopy" (Elsevier, New York, 1968), Ch. 9.
20. M. Goodgame, D.M.L. Goodgame and F.A. Cotton, Inorg. Chem., 1, 239 (1962).

[^0]: *Satisfactory magnetic susceptibility measurement could not be obtained.

